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ABSTRACT

The partition function for a two-dimensional plasma is eval-

uated within the random phase approximation. The periodic boundary

conditions are fully taken into account by including the periodic

image interactions. In the guiding-center limit, the "negative tem-

perature" threshold energy is evaluated, and a value different from

previous calculations results. When an identical randcm phase eval-

uation is applied to the finite gyroradius plasma, the Salzberg-

Prager-May equation of state is recovered.
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Considerable interest has arisen lately in the equilibrium

statistical mechanics of two-dimensional plasmas, both in the

"guiding center" and finite gyroradius limits.1-8 The "guiding

center" model is particularly interesting because its total phase

volume is finite, so that above a critical energy e, the temperature

is formally negative. 9 Here we evaluate the partition function for

both systems within the random phase approximation, and so arrive at

the threshold energy em.

In the random phase approximation, periodic boundary condi-

tions are implicit, which means that in calculating the total energy

we must include the interactions of all the charges with the images

of all the others. Until now this fact has not been appreciated. We

use the two-body non-central Ewald potential to calculate the energy

of the system, which includes the image interactions and leads to a

volume dependent term. For the finite gyroradius case, the Salzberg-

Prager-May equation of state is recovered, and for the guiding center

model a new value of 8 results.
m

We proceed from the canonical ensemble, which apparently has

not been done directly for the guiding center model. (For energies

near Pm, the usual steepest-descent evaluation of the partition func-

tion may not be assumed to imply the equivalence of the canonical and

microcanonical ensembles.) All our evaluations of thermodynamic

quantities derive explicitly from the partition function.
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The total energy for N positive and N negative charges in a

box of volume V may be written as P = =, (p/2) + 2 (

+ e . o is a constant which will be specified below. (x.ij ) is the

Ewald potential which includes the periodic images, and is

1 .(ij) = (4ee /V) Ek k - 2 exp(ik-nij). k = 2n/t / 2 , n is a

vector with integer components, V is the volume of the system, and

the prime on the summation means to omit k = 0. The ith charge is a

very long rod of length £ and charge e i . Following Brush, Sahlin,

10 11
and Teller, 10 and Nijboer and DeWette, we may put y(x ) into a

form convenient for numerical evaluation,

= ee. (Ei l + exp (- 2 + 2ni

+ El(TI -n i (1)

where ij.. = xij//2, and E(x) is the exponential integral. The

constant is = imo (x/ 12) - (x ,here (x) =

-(2e 2 /L) n x is the two-body Coulomb interaction. The numerical

value of 8 turns out to be e0 = -2.672(Ne2/1) + (Ne2/1) an V.

The partition function for the finite gyroradius case is

( = 2 N/(N!)2h4N) d2NdZ2 N exp(- P/9)' where e= kBT is the

temperature in energy units. The momentum space part is trivial,

and the configuration space part becomes

z config. fo 2N x( - i0-i j  /
f
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Following Taylor, we invoke the random phase approximation to

convert the integral over the 's to one over density variables

2 = (e.e./ V2) exp ik*(x - x.) , with corresponding
k i,j "

k k

Z nfig. =f II'( V 2 2 /2Ne 2 ) exp [-(V2/2Ne2 ) r k

config. k L

- (Eo + W/k 2 )/9 + (4nNe2 Vk2) d r . (2)

2
The integrations over rk are easily done and give Z =

k config.

H'(1 + k/k 2 ) - exp [/k 2 - Je] , where kD = 4.Ne2/gVe, which
k

may be represented as an integral over k, to give (m are the masses

of the rods):

2 nm 9 N2 n - 0 No
Z v2N 2r 2 exp e 2

(N!)2 h 2 h

COk hk e [a

2 2
+ (1 + e) (1 +

to to
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The various thermodynamic functions may be computed from

Eq. (3). The pressure is P = - b(pn Z)/aV = 2(N/V)e (1 - e2/2je),

7 8

which is the Salzberg-Prager-May equation of state. ' The internal

energy is (8) = 82 a(n Z)/ae = 2Ne + o - (Ne 2 /1) n (1 + Ne2/G).

The entropy is S = kB[e an z)/be + n z = 2NkBpm(2nJ ,mz_eV/hN) + 2]

+ kB[k(l + Ne 2/e) - Ne2/e].

Results for the "guiding center" model may be obtained by

ignoring the momentum-space contribution to Z. Thus we find for the

energy and entropy

(e>g.c. = o - (Ne /)a~(l + Ne2/e) (4)

and

S k n1 + Ne-2 2 (5)

We may eliminate 8 in favor of energy to obtain

S <>g.c. - o
Sg.c = k 1 N2
g.c. I Ne /

- ex -( - )/(Ne2 (6)
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The temperature is given by T-1 = P S/ g () Eqs. (4), (5), (6)

hold for e = kBT > 0. Therefore, the threshold value of (8)g.c.

may be obtained by letting T -o + w, and gives the threshold energy

em

m = = - 2.672(Ne2/ ) + (Ne2/L-nV , (7)

5 8

which differs from previous results. '

Previous evaluations of 8m have assumed an equivalence

between the sum of the pairwise potentials and 2 d7/8

self d,/8T, where is the electric field expressed as a

Fourier series, andf 2elf d/8wr is the infinite Coulomb self-

energy of the charges. The Fourier representation of the 1, how-

ever, assumes periodic boundary conditions. Therefore, the two

energies are equal only if the image charges are included in the

sums of the pairwise interactions. The expression in Eq. (7) can

be interpreted as the sum of the energies of the interaction of each

of the charges with its own images. Thus the threshold distribution

is still the random distribution, as previously determined. A

different conclusion was reached in Ref. (8).
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